1) How many quarters are the same as $\frac{1}{2}$?
\qquad

1 whole
2)

1 whole

4-shape

2-shape

1-shape

1) Use number shapes and cubes to represent $\frac{1}{4}$ in different ways and record them in your book.

b)

2) Explain how the diagram represents both $\frac{1}{2}$ and $\frac{2}{4}$.
\qquad
3)

The bar model shows that $\frac{1}{2}$ is equivalent to $\frac{6}{12}$.
a) Do you agree with Kelsey? Use reasoning to explain your answer.

Kelsey
\qquad
\qquad
b) Which of these fractions is $\frac{1}{2}$ and $\frac{6}{12}$ also equivalent to? Explain how you know.

\qquad
\qquad
4) Which of the bar models is the odd one out? Circle and explain your answer.
a)

b)

c)

d)

e) \square

1) Two friends are discussing the bar model.

Which of the two friends do you agree with? Use reasoning to explain your answer.

I can make an equivalent fraction with a denominator of 8 .

2) Do you agree with Ahmed? Within your explanation, provide examples where this may or may not be true.

\qquad
3) Do you agree with Sadie? Use reasoning to explain your answer.

\qquad
\qquad
4) Sort the fractions into the table. If it is not equivalent to $\frac{1}{4}$ or $\frac{1}{3}$ write an example of a fraction it is equivalent to.
$\frac{8}{32}$
32
$\begin{array}{ll}\frac{2}{9} & \frac{4}{16}\end{array}$
$\frac{2}{6}$
$\frac{3}{7}$
$\begin{array}{llll}\frac{8}{24} & \frac{4}{10} & \frac{4}{12} & \frac{2}{8}\end{array}$

Equivalent to $\frac{1}{4}$	Equivalent to $\frac{1}{3}$	Equivalent to a Different Fraction

